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Abstract Discrepancies and accords between quantum (QM) and classical mechanics (CM)
related to expectation values and periods are generally found for both the harmonic oscillator
(SHO) and a free particle in a box (FPB), which may apply generally. These indicate non-
locality is expected throughout QM. The FPB energy states violate the Correspondence
Principle. Previously unexpected accords are found and proven that 〈x2〉CM = 〈x2〉QM and
τCM = τQMb (beat period i.e. beats between the phases for adjoining energy states) for the
SHO for all quantum numbers, n. However, for the FPB the beat periods differ at small n.
It is shown that a particle’s velocity in an infinite square well varies, no matter how wide
the box, nor how far the particle is from the walls. The quantum free particle variances
share an indirect commonality with the Aharonov-Bohm and Aharonov-Casher effects in
that there is a quantum action in the absence of a force. The concept of an “Expectation
Value over a Partial Well Width” is introduced. This paper raises the question as to whether
these inconsistencies are undetectable, or can be empirically ascertained. These inherent
variances may need to be fixed, or nature is manifestly more non-classical than expected.

Keywords Harmonic oscillator and free particle expectation values · Non-locality ·
Aharonov-Bohm and Aharonov-Casher effects · Newton’s first and second laws in
quantum mechanics · Expectation values over complete and partial intervals ·
Correspondence Principle violation

1 Introduction

Although this paper focuses on quantum mechanical (QM) and classical mechanical (CM)
discrepancies, noteworthy consonances, for all quantum numbers, were found that 〈x2〉CM =
〈x2〉QM and τQM = τCM (beat periods) for the harmonic oscillator. This result may be unique
because by the Virial Theorem the harmonic oscillator is the only case where 〈PE〉 = 〈KE〉 =
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1
2Etotal = 1

2k〈x2〉 in both CM and QM making 〈x2〉QM = 〈x2〉CM as proven in detail Sect 3.3.
However, other quantum and classical discrepancies persist even at large quantum numbers.

This is a violation of the Correspondence Principle, and indicates that QM may not be
a theory that applies in all cases of the realm of observation. These and other disparities
are analyzed here, and appear to be both prevalent for all potentials, and possibly testable
experimentally. A free particle in a box manifests similarities with the Aharonov-Bohm [1]
and Aharonov-Casher [2] effects in that there is a quantum action in the absence of a force.
Therefore these established effects will be discussed quantum mechanically and classically
to facilitate comparison with the variances found in this paper.

2 Partial Well Width Expectation Values for an Infinite Square Well

2.1 General Quantum Considerations

Rather than calculate expectation values over the full range in which a particle can be found,
in this Section it will be informative to calculate partial well width expectation values (sub-
ensembles) to give insight to measurements that are confined to sub-regions of a larger
domain. We can find these partial width expectation values, starting with the definition of
the expectation value of a variable α in a region e.g. a potential well of width −a to a.
〈
αQM

〉
−a,a

=
∫ a

−a

ψ∗αψdx =
∫ −a/2

−a

ψ∗αψdx +
∫ 0

−a/2
ψ∗αψdx +

∫ a/2

0
ψ∗αψdx +

∫ a

a/2
ψ∗αψdx

= 〈α〉−a,−a/2 + 〈α〉−a/2,0 + 〈α〉0,a/2 + 〈α〉a/2,a , (2.1)

where for clarity and convenience the range −a to a has been broken up into 4 smaller equal
regions, defining each partial expectation value.

Similarly for normalization of the wave function ψ we have

1 =
∫ a

−a

ψ∗ψdx =
∫ −a/2

−a

ψ∗ψdx +
∫ 0

−a/2
ψ∗ψdx +

∫ a/2

0
ψ∗ψdx +

∫ a

a/2
ψ∗ψdx. (2.2a)

The range could have been broken up into any number of different sized regions. The treat-
ment here is one-dimensional for simplicity, but can easily be generalized to any number of
dimensions.

The established convention to normalize over the entire range will be followed here.
Anomalies can be circumvented for a parameter that is constant in a given state such as
energy E in an infinite square well. The partial range normalization from a1 to a2 yields

〈
EQM

〉 =
∫ a2

a1 ψ∗Eψdx
∫ a2

a1 ψ∗ψdx
=

∫ a2
a1 ψ∗[−�

2

2m
∇2]ψdx

∫ a2
a1 ψ∗ψdx

= E
∫ a2

a1 ψ∗ψdx
∫ a2

a1 ψ∗ψdx
= E. (2.2b)

The normalization in (2.2a) for partial energy expectation values is the sum over partial
intervals. The normalization in (2.2b) is for energy expectation values over a single partial
interval.

Section 2 will illustrate that not only can normalization affect the outcome, but so can the
partitioning of the expectation value intervals. Furthermore in Sect. 2 one may consider that
the energy is constant in each interval, but the population density varies. However, Sects. 3
and 4 do not have this option.
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2.2 Quantum Case for Particle in an Infinite Square Well of Width −a to a

For an Infinite Square Well of Width −a to a, the full range normalized wave function that
satisfies the time-independent part of the Schrödinger non-relativistic wave equation (4.1) is

ψn(x) =
√

1

a
sin

(nπx

2a
− nπ

2

)
. (2.3)

The energy expectation value is equal to the Hamiltonian expectation value. For the full well
width:

〈
EQM

〉
−a,a

= 〈H 〉 =
〈

p2

2m

〉
=

∫ a

−a

ψ∗
n

[−�
2

2m
∇2

]
ψndx

=
∫ a

−a

ψ∗
n

[−�
2

2m

∂2

∂x2

]
ψndx = h2n2

32ma2
. (2.4)

Now for four equal partial well widths, the partial expectation values are:

〈EQM〉−a,−a/2 =
∫ −a/2

−a

ψ∗
n

[−�
2

2m

∂2

∂x2

]
ψndx = h2n2[nπ + 2 sin(3nπ/2)]

128ma2π
, (2.5)

〈EQM〉−a/2,0 = h2n2[nπ − 2 sin(3nπ/2)]
128ma2π

, (2.6)

〈EQM〉0,a/2 = h2n2[nπ + 2 sin(nπ/2)]
128ma2π

, (2.7)

〈EQM〉a/2,a = h2n2[nπ − 2 sin(nπ/2)]
128ma2π

. (2.8)

From (2.5) through (2.8) we see explicitly:

〈
EQM

〉
−a,a

= 〈
EQM

〉
−a,−a/2

+ 〈
EQM

〉
−a/2,0

+ 〈
EQM

〉
0,a/2

+ 〈
EQM

〉
a/2/,a

. (2.9)

By inspection of (2.5) through (2.8)

〈EQM〉−a,−a/2 = 〈EQM〉a/2,a, and (2.10)

〈EQM〉−a/2,0 = 〈EQM〉0,a/2. (2.11)

Interestingly,

〈EQM〉−a,−a/2 = 〈EQM〉a/2,a = h2(π − 2)

128ma2π
for n = 1, and (2.12)

〈EQM〉−a/2,0 = 〈EQM〉0,a/2 = h2(π + 2)

128ma2π
for n = 1. (2.13)

Therefore in a force-free region, without the action of a force, although the particle’s total
energy averages out to Etotal and is conserved for the region as a whole, the particle’s local
partial energy appears to increase and decrease as the particle goes from sub-region to sub-
region, for full range normalization. This is as if there is a non-local quantum mechanical
action (as previously discussed by Rabinowitz [17] for 〈x2〉−a,a , and will be further analyzed
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in this paper). This is the case for all odd n states. But equally interesting this does not occur
in these particular regions for even n states (odd ψ ).

〈
EQM

〉
−a,−a/2

= 〈
EQM

〉
−a/2,0

= 〈
EQM

〉
0,a/2

= 〈
EQM

〉
a/2/,a

= 1

4

〈
EQM

〉
−a,a

for all even n states. (2.14)

In particular:

〈
EQM

〉
−a,−a/2

= 〈
EQM

〉
−a/2,0

= 〈
EQM

〉
0,a/2

= 〈
EQM

〉
a/2/,a

= h2

8ma2
for n = 2. (2.15)

The variations for odd n, and constancy for even n, follow from the properties of |ψ |2 since

〈EQM〉 =
∫ a2

a1
Etotalψ

∗ψdx =
∫ a2

a1
Et |ψ |2dx = Et

∫ a2

a1
|ψ |2dx.

2.3 Classical Case for Particle in an Infinite Square Well of Width −a to a

We can find classical partial width expectation values similarly to the quantum case, starting
with the standard expectation value of a variable α for a particle that is confined to a region
e.g. a potential well of width −a ≤ x ≤ a.

〈αCM〉−a,a =
∫ a

−a

αbPdx =
∫ −a/2

−a

αbPdx +
∫ 0

−a/2
αbPdx +

∫ a/2

0
αbPdx +

∫ a

a/2
αbPdx

= 〈α〉−a,−a/2 + 〈α〉−a/2,0 + 〈α〉0,a/2 + 〈α〉a/2,0 (2.16)

where P is the classical probability, which is inversely proportional to the particle’s velocity,
and b is the normalization coefficient.

For a classical free particle in a box, P is uniform because the particle’s speed is constant
in the infinite well of width −a ≤ x ≤ a. Normalizing the classical probability,

1 =
∫ a

−a

bPdx = bP (2a) ⇒ bP = 1

2a
. (2.17)

The free particle’s energy expectation value for the full well width is

〈ECM〉−a,a =
∫ a

−a

EbPdx =
∫ a

−a

E[1/2a]dx = E. (2.18)

The partial energy expectation values for partial well widths are

〈ECM〉−a,a/2 =
∫ −a/2

−a

EbPdx =
∫ −a/2

−a

E[1/2a]dx = E/4, (2.19)

〈ECM〉−a/2,0 =
∫ 0

−a/2
E[1/2a]dx = E/4, (2.20)

〈ECM〉0,a/2 =
∫ a/2

0
E[1/2a]dx = E/4, (2.21)
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〈ECM〉a/2,a =
∫ 0

a/2
E[1/2a]dx = E/4. (2.22)

From (2.18) through (2.22) we have explicitly:

〈ECM〉−a,a = 〈ECM〉−a,−a/2 + 〈ECM〉−a/2,0 + 〈ECM〉0,a/2 + 〈ECM〉a/2/a = E. (2.23)

Classically the particle has a partial well width energy that is constant across the entire well
width. Here the partial energy in each sub-region is E/4 because there were 4 sub-regions.

3 Simple Harmonic Oscillator (SHO)

It is important to establish that the classical and quantum disparities found in this paper are
not an artifact of an infinite gradient such as in the infinite square well for a free particle in
a box and that non-locality is also part of the QM SHO.

3.1 Classical Harmonic Oscillator

We begin with the classical harmonic oscillator so that we may compare with the corre-
sponding expectation values for a quantum harmonic oscillator. Let us normalize the classi-
cal probability density P which in classical mechanics (CM) is inversely proportional to the
oscillating particle’s velocity

1 =
∫ A

−A

b

±ω(A2 − x2)1/2
dx ⇒ b = ±ω

π
, (3.1)

where b is the normalization constant, A is the classical amplitude, and the angular fre-
quency ω = 2πf . Therefore the normalized classical probability density is

bP = 1

π(A2 − x2)1/2
. (3.2)

The classical particle position expectation values are

〈x〉CM =
∫ A

−A

x

[
1

π(A2 − x2)1/2

]
dx = 0, (3.3)

and all 〈xk〉CM = 0 for odd values of k = 1,3,5, . . . because P is even and xk is odd for all
odd k. For even values of k:

〈x2〉CM =
∫ A

−A

x2

[
1

π(A2 − x2)1/2

]
dx = A2

2
, (3.4)

〈x4〉CM =
∫ A

−A

x4

[
1

π(A2 − x2)1/2

]
dx = 3A4

8
, (3.5)

〈x6〉CM =
∫ A

−A

x6

[
1

π(A2 − x2)1/2

]
dx = 5A6

16
. (3.6)
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3.2 Quantum Harmonic Oscillator

The time independent Schrödinger equation for the SHO for a particle of mass m, oscillating
with frequency f , and angular frequency ω = 2πf , is:

−(h/2π)2

2m
∇2ψ + (2π2mf 2x2)ψ = Eψ. (3.7)

The eigenfunction solution to (3.7) for the one-dimensional SHO is

ψn(x) = bne
− ξ2

2 Hn(ξ) = bne
− α2x2

2 Hn(αx), (3.8)

where n = 0,1,2,3, . . . , ξ ≡ αx,α ≡ 2π[Mf/h]1/2 = [2πMω/h]1/2, and Hn(ξ) is the Her-
mite polynomial of the nth degree in ξ :

Hn(ξ) = (−1)neξ2 dne−ξ2

dξn
. (3.9)

In general, the normalization constant

bn =
[

α

π1/22nn!
]1/2

. (3.10)

We equate the quantum energy level solution to the classical energy

En = (n + 1/2)hf = (n + 1/2) h (ω/2π) = (1/2)mω2A2 (3.11)

to help in the comparison of the classical and quantum position expectation values.

3.2.1 Ground State n = 0 for Harmonic Oscillator

Let us first examine the ground state expectation values 〈xk〉QM since the variance with
classical mechanics (CM) is expected to be the greatest here. The normalized eigenfunction
for the ground state (n = 0) is

ψ0(x) = α1/2

π1/4
e− α2x2

2 . (3.12)

In general, the expectation value of 〈xk〉QM0 is

〈xk〉QM0 =
∫ ∞

−∞
ψ∗

0 xkψ0dx =
∫ ∞

−∞
xk

[
α1/2

π1/4
e− α2x2

2

]2

dx. (3.13)

The expectation value of 〈xk〉QM = 0 for odd values of the index k = 1,3,5, . . . because
ψ0(x) is an even function and xk is odd. In general 〈xk〉QM = 〈xk〉CM = 0, and in particular
〈x〉QM = 〈x〉CM = 0 by symmetry in QM and CM.

〈x〉QM0 =
∫ ∞

−∞
x

[
α1/2

π1/4
e− α2x2

2

]2

dx = 0 = 〈x〉CM. (3.14)

So let us focus on some even values of k.
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〈x2〉QM0 =
∫ ∞

−∞
x2

[
α1/2

π1/4
e− α2x2

2

]2

dx = 1

2α2
= A2

2
= 〈x2〉CM (Accord with CM),

(3.15)

〈x4〉QM0 =
∫ ∞

−∞
x4

[
α1/2

π1/4
e− α2x2

2

]2

dx = 3

4α4
= 3A4

4
= 2〈x4〉CM, (3.16)

〈x6〉QM0 =
∫ ∞

−∞
x6

[
α1/2

π1/4
e− α2x2

2

]2

dx = 15

8α6
= 15A6

8
= 6〈x6〉CM. (3.17)

3.2.2 First Excited State n = 1 for Harmonic Oscillator

〈x〉QM1 =
∫ ∞

−∞
x

[
α1/2

21/2π1/4
(2αx)e− α2x2

2

]2

dx = 0 = 〈x〉CM, (3.18)

〈x2〉QM1 =
∫ ∞

−∞
x2

[
α1/2

21/2π1/4
(2αx)e− α2x2

2

]2

dx = 3

2α2
= 〈x2〉CM (Accord with CM),

(3.19)

〈x4〉QM1 =
∫ ∞

−∞
x4

[
α1/2

21/2π1/4
(2αx)e− α2x2

2

]2

dx = 15

4α4
= 10

9
〈x4〉CM, (3.20)

〈x6〉QM1 =
∫ ∞

−∞
x6

[
α1/2

21/2π1/4
(2αx)e− α2x2

2

]2

dx = 105

8α6
= 14

9
〈x6〉CM. (3.21)

3.2.3 Second Excited State n = 2 for Harmonic Oscillator

〈x〉QM2 =
∫ ∞

−∞
x

[
α1/2

2π1/421/2
(4α2x2 − 2)e− α2x2

2

]2

dx = 0 = 〈x〉CM, (3.22)

〈x2〉QM2 =
∫ ∞

−∞
x2

[
α1/2

2π1/421/2
(4α2x2 − 2)e− α2x2

2

]2

dx = 5

2α2
= 〈x2〉CM

(Accord with CM) (3.23)

〈x4〉QM2 =
∫ ∞

−∞
x4

[
α1/2

2π1/421/2
(4α2x2 − 2)e− α2x2

2

]2

dx = 39

4α4
= 26

25
〈x4〉CM, (3.24)

〈x6〉QM2 =
∫ ∞

−∞
x6

[
α1/2

2π1/421/2
(4α2x2 − 2)e− α2x2

2

]2

dx = 375

8α6
= 6

5
〈x6〉CM. (3.25)

It is noteworthy that the quantum and classical second moments are equal, for all n, although
all the other even QM moments are greater due to barrier penetration. The Virial Theorem
may account for this unique result since the harmonic oscillator is the only case where
〈PE〉 = 〈KE〉 = 1

2Etotal = 1
2k〈x2〉 in both CM and QM ⇒ 〈x2〉QM = 〈x2〉CM , and as proven

in detail next.

As shown earlier in (3.8) ψn(x) = bne
ξ2
2 Hn(ξ) = bne

α2x2
2Hn(αx), where ξ ≡ αx, and

α ≡ 2π[Mf/h] 1
2 = [2πMω/h] 1

2 ,

〈x2〉QM =
〈
ξ 2

α2

〉
= 1

α2

∫ ∞

−∞
ψ∗

n ξ 2ψndx = 1

α2

∫ ∞

−∞

[
1

2

(
ξ + d

dξ

)
+ 1

2

(
ξ − d

dξ

)]2

ψndx
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= 1

α2

∞
inf−∞ψ∗

n

[
1

4

(
ξ + d

dξ

)2

+ 1

4

(
ξ − d

dξ

)2

+ 1

4

(
ξ + d

dξ

)(
ξ − d

dξ

)
+ 1

4

(
ξ − d

dξ

)(
ξ + d

dξ

)]
ψndx

= 1

α2

∫ ∞

−∞
ψ∗

n

[
1

4

(
ξ + d

dξ

)2

+ 1

4

(
ξ − d

dξ

)2

+ 1

2

(
− d2

dξ 2
+ ξ 2

)]
ψndx (3.26)

(
ξ + d

dξ

)2

ψn = 2[n(n − 1)] 1
2 ψn−2, (3.27)

(
ξ − d

dξ

)2

ψn = 2[(n + 1)(n + 2)] 1
2 ψn+2, and (3.28)

∫ ∞

−∞
ψnψjdx = 0 for n 
= j (3.29)

because the Hermite polynomials are orthogonal, leaving only the 3rd term of the integrand
in (3.26). Substituting, ξ ≡ αx:

〈x2〉QM =
(

1

α2

)∫ ∞

−∞
ψ∗

n

[
1

2

(
− d2

α2dx2
+ α2x2

)]
ψndx

=
∫ ∞

−∞
ψ∗

n

[
−

(
h

2(2πM)ω

)2
d2

dx2
+ x2

]
ψndx. (3.30)

FortheSHO : 〈Potential Energy〉QM ≡ 〈PE〉QM = 1

2
Mω2〈x2〉

=
∫ ∞

−∞
ψ∗

n

[
−

(
h2

2(4π2M)

)
d2

dx2
+ 1

2
Mω2x2

]
ψndx

= 1

2

∫ ∞

−∞
ψ∗

nEnψndx = 1

2
En = 1

2

(
n + 1

2

)
h

2π
ω

(3.31)

Since 〈PE〉QM − 〈KE〉QM = En, (3.31) = 〈PE〉QM = 〈KE〉QM = 1
2En. Classically:

1

2
Mω2〈x2〉CM = 〈PE〉CM = 〈KE〉CM = 1

2
E = 1

2
En. (3.32)

Therefore 〈x2〉QM = 〈x2〉CM for all states of the SHO.

3.3 Comparison of Quantum and Classical Harmonic Oscillator

We now compare the quantum and classical harmonic oscillator position expectation val-
ues based upon (3.4) to (3.6), and (3.14) to (3.25). It is noteworthy that 〈x2〉CM = 〈x2〉QM ,
although all higher order position even moments are not equal; and of course 〈xk〉QM =
〈xk〉CM = 0 for all odd k = 1,3,5, . . . . The accord of 〈x2〉CM = 〈x2〉QM prevails for all quan-
tum numbers.
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The higher order CM position even moments are significantly smaller than the higher
order QM position even moments, and the disparity increases as the moments get larger. This
can be attributed to penetration of the quantum wave function into the classically forbidden
region for both even and odd ψn(x) as ψψ = |ψ2| is even and enters into the integration.
This effect will diminish as one goes to higher quantum states, and should disappear as
n → ∞ for pure states. It is not clear that this will happen for wave packets [17].

The significance of the difference in the classical and quantum higher order position mo-
ments is that Newton’s Second Law of Motion is violated because the wave function pen-
etrates the classically forbidden regions so that the particle spends less time in the central
region and more time in the region of the classical turning points than allowed by Newton’s
Second Law. Next let us look at the opposite case where a particle spends more time in the
central region because the wave function terminates at the boundary rather than penetrat-
ing it.

4 Free Particle in a Box

The square well is an archetype problem of QM. It is used as a model for a number of
significant physical systems such as free electrons in a metal, long molecule, the Wigner
box, etc.

4.1 Quantum Case for Particle in a Box

The Schrödinger non-relativistic wave equation is:

−(h/2π)2

2m
∇2ψ + V ψ = i(h/2π)

∂

∂t
ψ, (4.1)

where ψ is the wave function of a particle of mass m, with potential energy V . In the case of
constant V , we can set V = 0 as only differences in V are physically significant. A solution
of (4.1) for the one-dimensional motion of a free particle of nth state kinetic energy En is:

ψ = bne
i2πx/λe−i2πEnt/h = bne

i2π( x
λ
− ω

2π
t), (4.2)

where the wave function ψ travels along the positive x axis with wavelength λ, angular
frequency ω, and phase velocity v = λω/2π .

We shall be interested in the time independent solutions. The following forms are equiv-
alent:

ψn = bne
i2πx/λ = bn cos(2πx/λ) + i sin(2πx/λ)

= bn sin(nπx/2a − nπ/2), n = 1,2,3, . . . (4.3)

for a particle in an infinite square well potential with perfectly reflecting walls at x = −a,
and x = +a, so that n

2 λ = 2a. The wall length 2a can be arbitrarily large, but needs to be
finite so that the normalization coefficient is non-zero.

We normalize the wave functions to yield a total probability of 1 for finding the particle
in the region −a to +a, and find

1 =
∫ a

−a

ψ∗ψdx =
∫ a

−a

|ψ |2 dx ⇒ bn = 1√
a

(4.4)



Int J Theor Phys (2009) 48: 706–722 715

where the normalization is independent of n.
In general

〈xk〉QM =
∫ a

−a

ψ∗xkψdx =
∫ a

−a

xk|ψ |2dx, for k = 1,2,3, . . . . (4.5)

Since |ψ |2 is symmetric here for both ψns and ψnas, x
k|ψ |2 is antisymmetric in the inter-

val −a to +a, because xk is antisymmetric. Thus without having to do the integration we
know that 〈xk〉 = 0 for all odd k, and in particular 〈x〉 = 0 for the nth state. Let us find the
expectation values 〈xk〉 where for k = 1,2,4, and 6 for the free particle in the nth state.

〈x〉QM =
∫ a

−a

ψ∗xψdx =
∫ a

−a

x|ψ |2dx = 0, (4.6)

〈
x2

〉
QM

=
∫ a

−a

ψ∗x2ψdx =
∫ a

−a

x2 |ψ |2 dx = a2

[
1

3
− 2

π2n2

]

= a2

3

[
1 − 6

π2n2

]
, (4.7)

〈x4〉QM =
∫ a

−a

ψ∗x4ψdx = a4

5
− 4a2(π2n2a2 − 6a2)

π4n4

= a4

5

[
1 − 20

π2n2
+ 120

π4n4

]
, (4.8)

〈x6〉QM =
∫ a

−a

ψ∗x6ψdx = a6

7

[
1 − 42

π2n2
+ 840

π4n4
− 5040

π6n6

]
. (4.9)

We will compare these values with the corresponding classical values in Sect. 4.2.

4.2 Classical Case for Particle in a Box

The classical probability P is inversely proportional to the velocity whose magnitude is
constant throughout the box (except at the walls). Therefore P is uniform for finding a
classical free particle in the region −a to +a. Normalizing the classical probability,

1 =
∫ a

−a

bPdx = bP (2a) ⇒ bP = 1

2a
. (4.10)

As for the quantum case, classically 〈xk〉 = 0 for all odd k because P is an even function.
The classical expectation values of 〈x〉 and 〈x2〉 are

〈x〉ClassicalMechanics = 〈x〉CM =
∫ a

−a

xbPdx =
∫ a

−a

x

2a
dx = 0, (4.11)

〈x2〉CM =
∫ a

−a

x2bPdx =
∫ a

−a

x2

2a
dx = a2

3
, (4.12)

〈x4〉CM =
∫ a

−a

x4bPdx =
∫ a

−a

x4

2a
dx = a4

5
, (4.13)

〈x6〉CM =
∫ a

−a

x6bPdx =
∫ a

−a

x6

2a
dx = a6

7
. (4.14)
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4.3 Comparing QM and CM Cases for Complete Interval Expectation Values

〈x〉QM = 0 = 〈x〉CM, (4.15)

〈x2〉QM =
[

1 − 6

π2n2

]
〈x2〉CM, (4.16)

〈x4〉QM =
[

1 − 20

π2n2
+ 120

π4n4

]
〈x4〉CM, (4.17)

〈x6〉QM =
[

1 − 42

π2n2
+ 840

π4n4
− 5040

π6n6

]
〈x6〉CM. (4.18)

It is clear from the analysis that the expectation values of all the odd moments 〈xk〉
(k = 1,3,5, . . .) are exactly equal to 0 for both QM and CM. As one might expect, for
even moments the variance between QM and CM is largest for small n, and furthermore is
larger the higher the moment. It is also clear from (4.16) to (4.18) that the QM even position
moments approach the CM values as n gets large.

The result 〈x〉QM = 0 = 〈x〉CM means that in moving between the walls of a box, a particle
spends an equal amount of time on either side of the box and hence the expectation value
for finding it, is at the center of the box. However, the results disagree for higher order
moments such as 〈x2〉QM = [1 − 6

π2n2 ]〈x2〉CM for a particle in a perfectly reflecting box of
length 2a between walls. At low quantum number n, this is smaller than the classical value
〈x2〉CM = a2

3 of (4.12). So, for the full well-width expectation value, this implies that not
only does the particle spend an equal time on either side of the origin, but that the particle
spends more time near the center of the box independent of the length a. This is inconsistent
with the results for either full or partial range normalization. Since we can make the length a

arbitrarily large, this effect is due to quantum mechanical non-locality of the presence of the
walls making itself felt near the center of the box because it does not go away with large a. It
is noteworthy that non-locality appears in such a fundamental case, as well as for the SHO.

This is a violation of Newton’s First Law of Motion (NFLM) because the particle must
slow down in the region of the origin even though there is a force on it only at the walls. The
particle cannot both be going at a constant velocity between the walls, slow down near the
center, and speed up again as it goes toward the opposite wall even if the walls are arbitrarily
long. Therefore in this example, we have a quantum action on a particle even where there
is no force. This is a simpler case than the Aharonov-Bohm [1], Aharonov-Casher [2], and
similar effects, has many of the same elements, and may be even more intrinsic to QM. It is
noteworthy that unlike such effects, it is independent of Planck’s constant h; and there are
no fields.

5 Quantum and Classical Periods

The object of this section is to relate QM phase and beat periods to CM periods.

5.1 Simple Harmonic Oscillator (QM Phase Period)

In general a wave packet representing a particle is given by a linear sum of the eigenfunctions
for a given Hamiltonian


(x, t) =
∞∑

n=1

bnψn(x)e−iωt =
∞∑

n=1

bnψn(x)e−i2πEnt/h, (5.1)
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because of the linearity of the Schrödinger equation. In particular for the simple harmonic
oscillator, the energy eigenfunctions ψn are given by (3.8) in terms of the Hermite polyno-
mials. As we shall make a general argument here, it is not necessary to specify the particular
eigenfunctions. We can see from (5.1) that the wave packet will complete N full quantum
mechanical phase periods, NτQM , when all the phase factors e−i2πEnt/h are equal. Since
e−i2πEnt/h = cos[2πEnt/h] − i sin[2πEnt/h], this occurs when

2πEnt/h = 2πEnNτQM

h
= 2πN + θ, (5.2)

where θ is the phase, and N is an integer that may vary as a function of n. To satisfy (5.2),
θ is either a constant, or only exceptional values of n may be used for the eigenfunctions
that make up the wave packet. In the more general case θ = constant, so we may set θ = 0
for convenience. Then, (5.2) implies

NτQM = h

En

[N ] ⇒ τQM = h

En

, (5.3)

where we are effectively considering one period with N = 1.
Thus from (5.3), quantum mechanically the phase period for the one-dimensional SHO

wave packet is

τQM = h

En

= h

(n + 1/2)(h/2π)ω
= 2π

(n + 1/2)ω
. (5.4)

Classically the period is

τCM = 1

f
= 2π

ω
. (5.5)

Taking the ratio of (5.4) and (5.5):

τQM

τCM
= 2π

(n + 1/2)ω

[
ω

2π

]
= 1

(n + 1/2)
−→
n→∞ 0. (5.6)

For n = 1,
τQM
τCM

= 2
3 , and since the ratio decreases monotonically as n increases, the two

periods are never equal, and τQM < τCM .

5.2 Free Particle in a Box (QM Phase Period)

The QM energy levels peculiarly get further from the CM energy levels, for a free particle
in a box. The QM energy dependence is

E = 1

2m
[p]2 = 1

2m

[
h

λ

]2

= 1

2m

[
h

4a/n

]2

= h2

2m

[
n2

16a2

]
= E1n

2. (5.7)

Because these energy levels go as n2 they get further apart [(n + 1)2 − n2 = 2n + 1] as n

increases unlike the classical continuum, and also unlike position expectation levels. This
is also unlike the QM harmonic oscillator and most other potentials. However, it is not
clear that this violates the classical limit if h → 0 as n → ∞, since the energy levels are
proportional to h2n2. Nevertheless energy states get further apart, while the position variance
gets closer.
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This peculiarity warrants a comparison of the classical and quantum periods. Classically
the period for the one-dimensional motion of a particle of velocity v in a box of wall sepa-
ration 2a is

τCM = 4a

v
= 4a

[ 2E
m

]1/2
= 4a

[
m

2E

]1/2

. (5.8)

Now let us examine the quantum mechanical phase period. From the general argument
by which (5.3) was derived for a wave packet:

τQM = h

E
= h

En

= h

E1n2
. (5.9)

Thus from (5.2) and (5.3)

τQM

τCM
= h

E
/4a

[
m

2E

]1/2

= h

E

1

4a

[
2E

m

]1/2

= h

2a
√

2mE1n2
= h

2an
√

2mE1
−→
n→∞ 0 (5.10)

Note that τQM > τCM for n = 1; τQM = τCM for n = 2, and thereafter τQM < τCM . Except for
the first 2 energy states, this trend is the same as the SHO for the phase τQM .

5.3 Quantum Beat Periods (Beat Period = (Beat Frequency)−1)

It is possible that the observable periods and hence the only periods relevant for the Cor-
respondence Principle are associated with beats between the phases for adjoining energy
states, i.e. τQMb = h/(En+1 − En) in general, rather than the phase period τQM = h/En

[cf. (5.4) and (5.9)] which may or may not be measurable. (This is analogous to the clas-
sical difference between phase velocity (which can be superluminal) and subluminal group
velocity, where vpvg = c2. It is the beat frequency = (En+1 − En)/h which is traditionally
observed.) For the Simple Harmonic Oscillator:

[
τQMb

τCM

]

SHO

= 2π/ω

2π/ω
= 1 for all n (Accord with CM). (5.11)

In this case for the Infinite Square Well:

[
τQMb

τCM

]

ISW

= 2n

2n + 1
−→
n→∞ 1. (5.12)

For n = 1, τCM = 1.5τQMb, and yet for the SHO [τCM = τQMb]SHO exactly for all n.

6 Findings in this Paper are Similar to Established Effects

Although the Aharonov-Bohm [1] and Aharonov-Casher [2] effects are commonly thought
to be explainable only by quantum mechanics (QM). there is also a classical interpreta-
tion. Even Berry’s geometric phase [4] seems amenable to classical interpretation. It is not
the purpose of this section to side with either the quintessential quantum, or classical ex-
planations, but this will be by way of contrast, as the quantum-classical expectation value
differences presented in this paper are not the result of electric or magnetic fields, or due to
phase differences; and appear not to have classical explanations.
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6.1 Aharonov-Bohm Effect

The question of which is more fundamental, force or energy is central to the foundations
of physics, though it is somewhat rendered void in the Lagrangian or Hamiltonian formula-
tions. In Newtonian classical mechanics (CM), force (vis motrix in Newton’s Principia [14]),
and kinetic energy (vis viva in Leibnitz’ Acta erud. [12]) are two of the foremost concepts.
In QM, potential and kinetic energies are the primary concepts, with force hardly playing
a role at all. It was not until 1959, some thirty-three years after the advent of QM that
Aharonov and Bohm described gedanken electrostatic and magnetostatic cases in which
physically measurable effects occur where presumably no forces act [1]. These are now
known as the Aharonov-Bohm (A-B) effect.

In the magnetic case, an electron beam is sent around both sides of a long shielded
solenoid or toroid so that the electron paths encounter no magnetic field and hence no mag-
netic force. Electrons do encounter a magnetic vector potential, which enters into the elec-
tron canonical momentum producing a phase shift of the electron wave function, and hence
QM interference. If the electrons go through a double slit and screen apparatus the shielded
magnetic field shifts the interference pattern periodically as a function of h/e in the shielded
region, where h is Planck’s constant and e is the electronic charge (in superconductors be-
cause of electron pairing, the magnetic flux quantum is h/2e).

This was confirmed experimentally and considered a triumph for QM. The A-B effect
appears not to have been seriously challenged for forty-one years until 2000 when Boyer
[5, 6] argued that the A-B effect can be understood completely classically. First he points
out that there has been no real experimental confirmation of the A-B effect. The periodic
phase shift of a two-slit interference pattern due to a shielded magnetic field has indeed been
confirmed. However, no experiment has shown that there are no forces on the electrons, that
the electrons do not accelerate, and that the electrons on the two sides of a solenoid (or
toroid) are not relatively displaced.

Boyer then goes on to propose a classical mechanism. The electron induces a field in
the conductor (shield or electromagnet) and this field acts back on the charged particle pro-
ducing a force which speeds up the particle as it approaches and then slows the particle
as it recedes, so that it time averages to 0. This sequence is reversed on the other side of
the magnetic source producing interference. The displaced charge in the shield (or solenoid
windings) affects the current in the solenoid, and hence the center-of-energy of the solenoid
field.

6.2 Aharonov-Casher effect

In 1984 Aharonov-Casher [2] (A-C) proposed an analog of the A-B effect in which the elec-
trons are replaced by neutral magnetic dipoles such as neutrons, and the shielded magnetic
flux is replaced by a line charge. They claimed that the neutral magnetic dipole particles un-
dergo a quantum phase shift and show an effect despite experiencing no classical force. The
A-C effect has been confirmed experimentally, and although it is considered to be solely in
the domain of QM, Boyer also proposed a classical interpretation of this effect.

In 1987 Boyer [10] argued that neutrons passing a line charge experience a classical
electromagnetic force in the usual electric-current model for a magnetic dipole. This force
will produce a relative lag between dipoles passing on opposite sides of the line charge, with
the classical lag leading to a quantum phase shift as calculated by A-C. Boyer went on to
predict that a consequence of his analysis is the breakdown of the interference pattern when
the lag becomes comparable to the wave-packet coherence length.

In 1991, Mignani [13] showed that the A-C effect is a special case of geometrical phases,
i.e. the standard Berry phase and the gauge-invariant Yang phase.
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6.3 Berry’s Geometric Phase

In 1984, the same year as the A-C effect, Berry [4] theoretically discovered that when an
evolving quantum system returns to its original state, it has a memory of its motion in the
geometric phase of its wavefunction. There are both quantum and classical examples of
Berry’s geometric phase (BGP), but as far as I know no one has yet challenged the QM
case with a CM explanation. It is noteworthy that in 1992 Aharonov and Stern [3] did the
QM analog of Boyer’s [10] CM analysis, in examining BGP in terms of Lorentz-type and
electric-type forces to show that BGP is analogous to the A-B effect.

7 Discussion

Although Quantum Mechanics (QM) is considered to be a theory that applies throughout the
micro- and macro-cosmos, it has fared badly in the quantum gravity realm as discussed by
Rabinowitz [15, 16], and there is no extant theory after almost a century of effort. In the case
of the macroscopic classical realm, it is generally believed that quantum expectation values
should correspond to classical results in the limit of large quantum number n, or equivalently
in the limit of Planck’s constant h → 0. Some processes thought to be purely and uniquely
in the quantum realm like tunneling, can with proper modeling also exist in the classical
realm as shown by Cohn and Rabinowitz [11].

Bohm has long contended that classical mechanics is not a special case of quantum me-
chanics [5, 6]. As shown by the analysis of the free particle in a box, and of the harmonic
oscillator, the present paper makes an even stronger statement that the predictions of both
Newton’s First and Second Laws are violated in the quantum realm. So quantum mechanics
is incompatible with them in that domain despite the fact that Newton’s Second Law can be
derived by QM [18]. Bohr’s Correspondence Principle [7] formulated in 1928 argues that
QM yields CM as the quantum number n → ∞, though the energy levels for a particle in a
box do not do so.

We can gain a new insight as to why no radiation is emitted in the ground state. From
the perspective of beat frequencies, no radiation is emitted in the ground state because the
wave function cannot represent observable oscillatory motion as there can be no difference
in phase frequencies i.e. no beat frequency. This may be less tautological than saying “no
radiation is emitted in the ground state because there is no lower state to go to.”

8 Conclusion

The harmonic oscillator potential is archetypal in QM as an approximation to more difficult
potentials, as a second order approximation to a Taylor series expansion near a stable equi-
librium point. It is remarkable that the SHO is exactly solvable in all realms from CM to QM
to quantum field theory. Thus it is a noteworthy accord in finding that 〈x2〉CM = 〈x2〉QM and
τQM = τCM (beat periods) exactly for the harmonic oscillator for all quantum numbers [17];
and probably for no other well. This occurs despite the fact that there is significant pene-
tration of the wave function into the classically forbidden region. Despite these accords, the
QM SHO exhibits non-locality, as does the FPB and all other potential wells.

Because of non-locality, the QM results contradict the Hamiltonian, and a particle’s ve-
locity in an infinite square well varies, no matter how wide the box, nor how far the particle
is from the walls (for negligible wall effects). If a particle’s velocity, v, is constant, then
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its position probability distribution is obliged to be constant by isotropy and symmetry. If
a particle’s probability distribution is not constant, then its velocity is not constant since
if A = B , then notB = notA. For a constant v, the Uncertainty Principle implies an in-
definite position, but not a non-uniform position probability inside the well as this would
violate isotropy and symmetry. It is not like a sound wave that must have nodes at a wall
because the medium is clamped there. It is not like an electromagnetic field that is clamped
at a conductor. The lack of uniformity implies that we call the vacuum is a non-empty
medium.

For well-width expectation values, the free particle in a box and the simple harmonic
oscillator (SHO) are examined in detail to uncover classical and quantum disparities. Except
for these simple cases, quantum mechanical solutions are exceedingly difficult and turbid.
The results indicate that such discrepancies may be expected to be found commonly for
a wide range of quantum phenomena. Quantum mechanics gives the illusion of obeying
Newton’s laws in the quantum realm because it starts with a Hamiltonian that incorporates
Newton’s law, and because QM can derive Newton’s law (since it was formulated to do
so). As shown in this paper, QM is incompatible with Newton’s 1st and 2nd laws in the
quantum domain, and this incompatibility appears to extend into the classical limit for some
cases. Significant differences were found in this analysis for QM and CM expectation values.
Since expectation values are supposed to correspond to possible classical measurements, one
may be optimistic that these findings are amenable to experimental test. We should never
underestimate the ingenuity of experimentalists, and the use of femtosecond lasers. There is
the dilemma that the infinite well successive quantum energy levels get significantly further
apart since En+1 − En ∝ (n + 1)2 − n2 = 2n + 1 −→n→∞ ∞, in contrast to the classical
continuum; as well as a significant difference in periods. For n = 1, τCM = 1.5τQMb, and yet
for the SHO [τCM = τQMb]SHO exactly for all n.

This paper raises a question regarding the universality of QM, and whether apparent
quantum self-inconsistency may be examined internally, or must be empirically ascertained.
If there is an inherent lack of internal verifiability, this may either point to inconsistencies
in quantum mechanics that should be fixed, or that nature is manifestly more non-classical
than one would judge from the Hamiltonian used to obtain quantum solutions. The answer
is not obvious.

Acknowledgement I wish to thank David Finkelstein, Art Cohn and Frank Rahn for helpful discussions,
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